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Abstract: Terrestrial network solutions prepared by different institutes and/or at different epochs imply different reference frame
definitions, since various reference stations and processing strategies may be involved. A combination procedure, utilizing a time-variant
similarity transformation model, enables a geometric integration of multiple solutions into a common reference frame definition. Addi-
tional benefits, including an elimination of systematic bias and a cross check on the quality of each individual network solution, could also
be achieved. In this study, a combination approach which takes into account complete geometric interrelations between multiple solutions
is developed. With the observable dependency analysis procedure, the proposed approach guarantees a self-consistent, more meaningful,
combination solution regardless of the choice of a reference solution. Numerical tests have been performed on actual International Global
Navigation Satellite System (GNNS) Service (IGS) and National Geodetic Survey (NGS) solutions using the Geodetic Network Analysis
Tool software developed along with this study. Results reveal potential problems if the proposed analysis procedure is not implemented

in a combination solution.
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Introduction

Fostered by the developments of space technologies and satellite
geodesy, precisely defined terrestrial reference frames have been
established globally and locally everywhere throughout the world.
Examples are the International Terrestrial Reference Frame
(ITRF) (see, e.g., Boucher and Altamimi 1989, and Ray et al.
1999), the North American Datum 1983 (NADS3) (Schwarz
1989), the European Terrestrial Reference System 89 (ETRS89)
(Boucher and Altamimi 1992), the Geocentric Datum of Australia
1994 (GDA94) (Steed 1995), etc. Additionally, the weekly solu-
tions provided by the International Global Navigation Satellite
System (GNSS) Service (IGS) can also be regarded as a global
reference frame with more up-to-date information (Ferland 2004).
These newly established reference frames are designated to pro-
vide a reliable basis for any spatial applications. However, due to
the earth dynamics, points on the Earth surface are moving with
respect to one another (see e.g., DeMets et al. 1990). As a result,
any reference frame which is realized by the positional coordi-
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nates and velocities of a selected set of reference sites also
evolves with time.

In a classic approach, a terrestrial network solution is gener-
ated by constraining the positions/velocities of a specific set of
reference sites. Those reference sites (also referred to as control
or fiducial points) from different reference frames and/or at dif-
ferent epochs will result in solutions with different reference
frame definitions. Furthermore, various data processing strategies
and observational techniques may also produce solutions that
have slightly different reference frame definitions. In order to
make use of all the solutions that come with nonunified reference
frame definitions, a combination approach can be applied. In a
combination approach, all available solutions are homogeneously
transformed to a common reference frame by postulating a geo-
metric similarity between each pair of solutions. After estimating
(several sets of) similarity transformation parameters and the
transformed coordinates/velocities in a predefined reference
frame, a combination solution containing all the information from
different solutions but expressed in a common reference frame is
thus generated (see, e.g., Altamimi et al. 2002; Altamimi and
Boucher 2003; Ray and Altamimi 2005). A combination approach
also provides an opportunity to perform a cross-check on the
consistency between different solutions and to reestimate their
accuracies under the combination model, using the variance esti-
mation technique for heterogeneous data sets described in Gra-
farend (1984) and Sahin et al. (1992).

The major emphasis of this study is thus on the investigation
of a combination approach that rigorously takes into account the
complete geometric relationships between multiple network solu-
tions. By identifying all possible independent interrelations
between multiple solutions and implementing them in a com-
bination procedure, the resulting combination solution is more
self-consistent and comprehensive. As will be shown in the “Case
Study” section, a significant problem could occur in the final so-
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lution if the combination approach described in this study is not
implemented.

Mathematical Model

In order to align network solutions that are based on different
reference frame definitions, a time-variant similarity transfor-
mation is typically applied (see e.g., Soler 1998; Snay 1999;
Soler and Snay 2004; Boucher and Altamimi 2001; Altamimi
et al. 2002; Han and van Gelder 2006). For multiple network
solutions to be transformed to a common reference frame, one can
write

X¢ = 0o1c[Ryc]Xy + Tyc (1)

Here Xj=positional vector in the solution I (input solution);
Xc=positional vector in the solution C (output/combination
solution); and oyc, [Ryc], and Tyc=similarity transformation pa-
rameters (i.e., scale, rotations, and translations) from solution I to
solution C. For transforming the velocity vectors from different
solutions, the following equation is applied:

{70 =[01c[Ryc] + O-IC[RIC]]XI + UIC[RIC]{]I + Ty (2)

Here Vj=velocity vector in the solution I (input solution);
Ve=velocity vector in the solution C (output/combination

solution); and 6y¢, [Ryc], and Tye=time derivatives of the simi-
larity transformation parameters, which represent the time-
dependent variations of the scale, rotational, and translational
parameters from solution I to solution C.

When multiple network solutions (I=1,...,n) are given
and to be combined, a reference solution should be assigned
in order to provide partial constraints for the combination
solution C. Consequently, the combination solution is based
on the same reference frame definition as the chosen reference
solution. Then, by estimating (multiple sets of) the similarity
transformation parameters and their time-dependent variations

(o1cs[Ricls Trce, 1es [Ricls Tie)i=1.. o in Egs. (1) and (2), all the
positions and velocities from each input solution can be trans-
formed accordingly into a common reference frame. Fig. 1
illustrates this combination procedure. Note that the unique points
in the figure represent the points that exist in only one of the
solutions.

It should also be pointed out that a time-variant similarity
transformation model is typically rank deficient. Fourteen param-
eters are presented in the model but only seven of them are inde-
pendent. Consequently, it is not possible to obtain the estimates of
all 14 parameters in one single step in the sense of the least-
squares estimation. Hence, a stepwise approach proposed by Han
and van Gelder (2006) should be applied to avoid the rank-
deficiency problem and to give more meaningful parameter esti-
mates without deteriorating the rigorousness of the transformation
model.

Geometric Dependency between Multiple Similarity
Transformations

Since a geometric similarity is postulated between each pair of
network solutions, all those relations should be identified and
used in a combination for rigorousness. However, it can be
proven that the transformations between multiple pairs of solu-
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Fig. 1. Procedure for combining multiple network solutions

tions are not all independent. Here a three-solution case is used to
illustrate this issue. Suppose the positional coordinates of three
solutions to be combined are X¢, X, and X,. One can write (at
most) three transformations between them

Xc=0c[Ric]X; + Tic (3)
X¢ = 0oc[Ryc]Xs + T (4)
X, =0[Rp X+ T, (5)

However, from Egs. (3) and (4), it can be shown that

XC

Fig. 2. Venn diagram showing duplication of information in deter-
mining transformation parameters for three-solution combination
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Fig. 3. Site distributions of three geodetic solutions in combination

- o ~ 1 N N
X, = —S[Ryc ][R c]X, + —[Ryc]"(T1c—Toe)  (6)
O O,

By comparing Eq. (5) with Eq. (6), one can immediately write

Opp= Zle (7)
Osc
[Rpx]=[Ryc]"[Ryc] (8)
le = L[RZC]T(TIC - Tzc) )
2¢

Egs. (7)-(9) reveal the fact that the third set of transformation
parameters (P,) is dependent on the other two sets of parameters
(P,c and P,¢). Consequently, if one wants to fix the complete
geometric relationships between these three solutions, one should
use condition equations (3), (4), and (6) instead of Egs. (3)—(5)
for the reason just stated.

Following similar derivations, the equations to combine ve-
locities from three solutions can also be written with two sets of
independent transformation parameters

{Ic =[0c[Rycl+ Ulc[Rlc]]il + O'IC[RIC]{]l +Tc (10)

Table 1. Information Used to Determine Transformation Parameters in
Three-Solution Combination

All possible Independent
Transformation information information
XI*}XC (XlﬂXC)=I+H (XlﬂXC)=I+H
X2—>XC (XzﬂXC)=I+III (XzﬂXC)=I+III
X,—X, X NX)=I+IV  (X;NX,)-(X,NX,NX) =1V

Ve=[62c[Roc] + Uzc[ch]]Xz +05c[Roc]Va+ Ty (11)

- [R ]T . . GHO .
V,= = G1c[Ric]+0c[Ric] - - 1C[Rlc] - 01c[Rac]
2C
- O = [Ry]"
X[ch]T[Rlc]]Xl + _IC[R2C]T[Rlc]V1 + ===
O2c 2C
- - G . [Rye]" - -
X(Tyc=Tyc) - (LC + [ch]T[ch]) =2 (T - Tae)
O2c O2c

(12)

For a general n-solution case, there exist C)=n(n—1)/2 trans-
formations between them. However, one can prove that only
(n—1) sets of transformation parameters are independent. The rest
of the n(n—1)/2—(n—1)=(n-1)(n-2)/2 sets of transformation
parameters can be analytically derived from these (n—1) indepen-
dent sets of parameters. As a result, the parameter estimates could
become highly or partially dependent, if these dependent transfor-
mations share common observables. In such a case, further treat-
ment on the common observables becomes necessary, as will be
discussed in the following section.

Table 2. Summary of Input SINEX Files

Solution ID SINEX1 SINEX2 SINEX3
SINEX name ngs94-03.snx IGS03P33_RS99.snx IGSO5P15.snx
Number of records® 292 99 277
Number of sites 251 99 247
Reference epoch 1,998.0 1,998.0 1,998.0

“Including multiple records at the same site.
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Fig. 4. Three-dimensional mesh representations of input covariance matrices (upper: ngs94-03.snx; lower left: IGS03P33_RS99.snx; lower right:

IGS05P15.snx)

Observable Dependency Analysis

As shown in the previous section, there are dependent transfor-
mations between multiple solutions and problems could occur
when common observables (i.e., station coordinates and veloci-
ties) are used to estimate the dependent sets of transformation
parameters. To avoid this problem, all observables should be care-
fully arranged so that any set of observables is only used for
estimating independent parameters. A Venn diagram in Fig. 2
shows the information (i.e., observables) involved in a combina-
tion of three different solutions. While estimating the transforma-
tion (X;—X¢), the common information in Regions I and II is
used. Similarly, the common information in Regions I and III is
used to determine the transformation (X, —X¢). As a result, the
information in Region I is used twice. This does not cause any
problem since the same information is used in estimating two
independent sets of transformation parameters. However, while
forming the condition equations between X, and X,, the informa-
tion in Region I should not be used again due to the fact that the
transformation (X;—X,) is dependent on the transformation
(X;—X) and the transformation (X, —X), as discussed in the
previous section. In other words, if the same information is being
used more than once in determining dependent parameter values,
an overestimation problem will be the result. In this case, only the
information in Region IV should be used to construct condition
equations between X, and X, using Eq. (6).

Table 1 summarizes the appropriate sets of observables that
should be used in determining the transformations between three
given terrestrial solutions.

Case Study

In this study, the real data of three globally distributed network
solutions, one provided by the National Geodetic Survey (NGS),
NOAA, and the other two by the IGS, are combined using the
proposed combination approach. These solutions are expressed in
the Software INdependent EXchange (SINEX) format. Fig. 3 and
Table 2 show the site distributions and a summary of these three
network solutions. As shown in Table 2, there are multiple records
at the same site in the SINEX files, which typically come from a
discrete change of antenna positions at the same sites. Besides,
the second and third SINEX files (i.e., IGS03P33_RS99.snx and
IGS05P15.snx) are IGS solutions obtained at different epochs, but
both are transformed and given at the same epoch (1998.0). It is
also noted that the covariance matrix provided in the first SINEX
file (i.e., by NGS) is several orders of magnitude smaller than the
other two SINEX files. Apparently, these covariance values do not
give a direct indication for the quality of station coordinates, but
for the statistical structure (i.e., correlations) between all stations
in a network solution. See Fig. 4 for a graphic representation of
these covariance matrices.

These three solutions are combined using the Geodetic Net-
work Analysis Tool (GNAT) software that has been developed to
implement the combination approach proposed by this research.
After carrying out the observable dependency analysis (ODA)
procedure, a Venn diagram is generated as shown in Fig. 5. The
ODA result is then used to locate appropriate sets of observables
while estimating the transformation parameters. Table 3 lists the
estimated parameter values. Note that the first SINEX is used as
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Fig. 5. Venn diagram showing numbers of sites in each region be-
tween three SINEX solutions

the reference solution in this study. A direct application of refer-
ence frame transformation converts the second and third solutions
into the reference frame defined by this reference solution. A
combined solution that contains a union of all sites from three
input solutions but expressed in a common reference frame is
obtained.

Since the complete geometric relations between solutions are
taken into account, the combination solution should be unique
and self-consistent. In this case study, the 21 common sites
in Region IV (intersection of SINEX 2 and SINEX3) are exam-
ined. Their positional coordinates in the combination solution are
computed by: (1) using the coordinates in SINEX2 and applying

transformation parameters P, (i.e., X§¥=02C[R2C]X§V+fzc);
and (2) using the coordinates in SINEX3 and applying transfor-
mation parameter Pic (i.e., X3v=03c[R3c]X5 +Tse). It is
confirmed that these two computations result in an identical solu-
tion (ie., [XI—XM[<107° m). However, if the proposed ap-
proach is not considered but a direct transformation of SINEX 2
and SINEX3 is simply applied, those 21 common sites will
have inconsistent values in the combined solution. In this
study, the positional inconsistency for these 21 sites reaches

the 10°-102m level (ie, mean|X5.—XL[=0.006 m:

Table 3. Parameter Estimates for Three-Solution Combination

max|)2§‘é—)2%|=0.060 m), which would pose a significant prob-
lem due to the neglect of complete geometric relations between
multiple solutions.

Remarks

The main purpose of a combination is to produce an integrated
solution that is based on a consistent reference frame definition.
To achieve this goal, the complete geometric relations (and inter-
relations) should be fully taken into consideration. By applying
the proposed combination approach, one is able to identify appro-
priate geometry and resolve dependencies between observables
and parameters, and thus obtain a unique and self-consistent com-
bination solution. On the other hand, if the proposed approach is
not implemented, errors could occur, deteriorating the quality of
the combination solution.

It should be emphasized that this research is focused on the
geometric combination of multiple solutions based on a similarity
transformation model. Although it is possible to combine time
series solutions under the proposed model, it is not recommended
to do so. The reason is that often there is not necessarily a specific
geometric relationship between the various time series due to
possible discrete movements (i.e., noncommon motions) at
some sites caused by earthquakes, antenna changes, etc. A better
way to combine time series solutions is to apply the Kalman filter
technique, which allows one to estimate/predict the solution at a
specific epoch based on the observations during a period of time
(see, e.g., Dong et al. 1998; and Herring et al. 2006).
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SINEX2 — SINEX1 SINEX3 — SINEX1 SINEX2 — SINEX3
Py Py Pyy=Pyc—Psc’
o (ppb)* ~0.12+0.07 ~0.19=0.01 0.07=0.07
rx (mas)® 0.00+0.01 -0.07=0.01 0.07£0.02
ry (mas) -0.06=0.01 -0.05*=0.01 -0.02+0.01
rz (mas) -0.06£0.01 -0.05*=0.01 -0.01£0.01
Tx (cm) 0.00+0.03 0.22£0.06 -0.22£0.06
Ty (cm) 0.00x0.04 0.06 £0.08 -0.060.08
Tz (cm) -0.22*0.03 -0.55*=0.05 0.33£0.05
o_d (ppb/year) -0.260.03 -0.27*=0.01 0.01+0.03
rx_d (mas/year) 0.01+0.00 0.01+0.00 0.00+0.01
ry_d (mas/year) 0.00x0.00 -0.01 =0.00 0.01+0.01
rz_d (mas/year) 0.00+0.00 0.01=0.00 -0.01£0.01
Tx_d (cm/year) 0.07+0.01 0.04£0.02 0.03£0.02
Ty_d (cm/year) -0.22+0.02 -0.24+0.01 0.02+0.02
Tz_d (cm/year) -0.16£0.01 -0.15%£0.01 -0.01£0.01

*ppb=107°.

®Derived values based on Egs. (7)—(12), which in this case can be approximated by P,;=P,c—P;c.

“mas=milli-arc-second.
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